peer reviewedData scarcity is a common issue when training deep learning models for digital pathology, as large exhaustively-annotated image datasets are difficult to obtain. In this paper, we propose a self-training based approach that can exploit both (few) exhaustively annotated images and (very) sparsely-annotated images to improve the training of deep learning models for image segmentation tasks. The approach is evaluated on three public and one in-house datasets, representing a diverse set of segmentation tasks in digital pathology. The experimental results show that self-training allows to bring significant model improvement by incorporating sparsely annotated images and proves to be a good strategy to relieve labeling effort in the digital pathology domain