Design of a superconducting magnetic shield closed on both ends for a high-sensitivity particle detector

Abstract

peer reviewedThis work deals with the numerical design of a high-efficiency superconducting magnetic shield required for a high-sensitivity particle detector. This research was carried out in the context of the ‘ABRACADABRA’ project aiming at detecting hypothetical elementary particles called axions. Axions are promising candidates to explain the particle nature of the dark matter. The detector relies on a SQUID for measuring the ultra-small oscillating magnetic field resulting from the interaction between the axions and a toroidal DC field. A magnetic shield is mandatory to reduce the ambient magnetic field noise. Given the operating temperature (~ 1.2 K), the shield is made of type-I superconductor. In this work we use numerical modelling to determine the best topology for the shield and its ability to screen both axial and transverse fields. Amongst the geometries investigated (tubes or ‘swiss-rolls’ closed on both ends) the best results are obtained with two semi-closed tubes inserted in one another. This geometry is close to the shield of the final prototype, made of two closed Cu tubes, spin-coated with Sn (Tc = 3.72 K) and welded shut

    Similar works