An Adversarial Attacker for Neural Networks in Regression Problems

Abstract

International audienceAdversarial attacks against neural networks and their defenses have been mostly investigated in classification scenarios. However, adversarial attacks in a regression setting remain understudied, although they play a critical role in a large portion of safety-critical applications. In this work, we present an adversarial attacker for regression tasks, derived from the algebraic properties of the Jacobian of the network. We show that our attacker successfully fools the neural network, and we measure its effectiveness in reducing the estimation performance. We present a white-box adversarial attacker to support engineers in designing safety-critical regression machine learning models. We present our results on various open-source and real industrial tabular datasets. In particular, the proposed adversarial attacker outperforms attackers based on random perturbations of the inputs. Our analysis relies on the quantification of the fooling error as well as various error metrics. A noteworthy feature of our attacker is that it allows us to optimally attack a subset of inputs, which may be helpful to analyse the sensitivity of some specific inputs

    Similar works

    Full text

    thumbnail-image

    Available Versions