On the detection of RFI through the correlation anomaly at different time lags

Abstract

Microwave radiometers can be considerably affected by Radio Frequency Interference (RFI). These man-made interference conceal the underlying natural signal, preventing the retrieval of geophysical variables. Adopting on-board detection and mitigation techniques is a requirement to reduce the impact of RFI. Several families of RFI detection algorithms have been developed over the last years (e.g. [1]–[4]). In this work, a new detection technique is proposed and its performance analyzed. It is based in the distortion of the shape of the cross-correlation function at lags different from zero under the presence of RFI. Its performance is compared to other common RFI mitigation algorithms. Proposed methods' performance is found to surpass other common algorithms such as signal Kurtosis, while presenting some convenient properties for its practical application in correlation and synthetic aperture radiometers.Peer ReviewedPostprint (author's final draft

    Similar works