Interstitial diagnosis and treatment of breast tumours

Abstract

This thesis exploits the interaction of light with breast tissue for diagnosis and therapy. Optical biopsy is an experimental technique, based on Elastic Scattering Spectroscopy (ESS), being developed for characterising breast tissue. An optical probe interrogates tissue with a white light pulse, with spectral analysis of the reflected light. 264 spectral measurements (50 patients) were obtained from a range of breast tissues and axillary lymph nodes and correlated with conventional histology of biopsies from the same sites. Algorithms for spectral analysis were developed using ANN (Artificial Neural Network), HCA (Hierarchical Cluster Analysis) and MBA (Model Based Analysis). The sensitivity and specificity for cancer detection in breast and lymph nodes were: [diagram]. Interstitial Laser Photocoagulation (ILP) involves image guided, thermal coagulation of lesions within the breast using laser energy delivered via optical fibres positioned percutaneously under local anaesthetic. Two groups were studied: 1) Nineteen patients with benign fibroadenomas underwent ILP and the results compared with 11 treated conservatively. Thirteen ILP patients (14 fibroadenomas) and 6 controls (11 fibroadenomas) have reached their one-year review: [diagram]. These differences are statistically significant (P<0.001). 2)Six patients with primary breast cancers underwent ILP (with pre- and post-ILP contrast enhanced MRI) within 3 weeks of diagnosis and were then treated with Tamoxifen. Four underwent surgery at 3 months, two showing complete tumour ablation. MRI was reasonably accurate at detecting residual tumour. In conclusion: a) optical biopsy is a promising 'real time' diagnostic tool for breast disease. b) ILP could provide a simple and safe alternative to surgery for fibroadenomas. c) ILP with MRI monitoring may be an alternative to surgery in the management of some patients with localised primary breast cance

    Similar works