Efficient solutions to the placement and chaining problem of User Plane Functions in 5G Networks

Abstract

This study attempts to solve the placement and chaining problem of 5G User Plane Functions (UPFs) in a Multi-access Edge Computing (MEC) ecosystem. The problem is formalized as a multi-objective Integer Linear Programming (ILP) model targeted at optimizing provisioning costs and quality of service. Our model takes into account several aspects of the system such as UPF-specific considerations, the Service Function Chain (SFC) requests topology (single and multiple branches), Virtual Network Function (VNF) order constraints, service demands, and physical network capacities. Since the formulated problem is NP-hard, two heuristic solutions are devised to enhance solution efficiency. Specifically, an algorithm called Priority and Cautious-UPF Placement and Chaining (PC-UPC) and a simulated annealing (SA) meta-heuristic are proposed. Through extensive simulation experiments, we evaluated the performance of the proposed solutions. The results revealed that our solutions outperformed the baselines (i.e., two greedy-based heuristics and a variant of the classical SA) and that we had obtained nearly optimal solutions with significant reductions in running time. Moreover, the PC-UPC algorithm can effectively avoid SFC rejections and improve provisioning costs by considering session requirements, current network conditions, and the effects of VNF mapping decisions. Additionally, the proposed SA approach incorporates several mechanisms (e.g., variable Markov chain length and restart–stop) that allow the improvement of not only the quality of the solutions but also their computation time.Postprint (published version

    Similar works