Therapeutic Breast Reconstruction Using Gene Therapy–Delivered IFNγ Immunotherapy

Abstract

After mastectomy, breast reconstruction is increasingly performed using autologous tissue with the aim of improving quality of life. During this procedure, autologous tissue is excised, relocated, and reattached using vascular anastomoses at the site of the extirpated breast. The period during which the tissue is ex vivo may allow genetic modification without any systemic exposure to the vector. Could such access be used to deliver therapeutic agents using the tissue flap as a vehicle? Such delivery may be more efficient than systemic treatment, in terms of oncological outcomes. The cytokine interferon gamma (IFNγ) has antitumor effects, but systemic toxicity that could be circumvented if its effect can be localized by delivery of the IFNγ gene via gene therapy to autologous tissue used for breast reconstruction, which then releases IFNγ and exerts anti-tumor effects. In a rat model of loco-regional recurrence (LRR) using both MADB-106-Luc and MAD-MB-231-Luc breast cancer cells, autologous tissue was transduced ex vivo with an adeno-associated viral vector (AAV) encoding IFNγ. The therapeutic reconstruction released IFNγ at the LRR site and eliminated cancer cells, significantly decreased tumor burden (P<0.05), and increased survival by 33% (P<0.05) compared to sham reconstruction. Mechanistically, localized IFNγ immunotherapy stimulated M1 macrophages to target cancer cells within the regional confines of the modified tumor environment. This concept of therapeutic breast reconstruction using ex vivo gene therapy of autologous tissue offers a new application for immunotherapy in breast cancer with a dual therapeutic effect of both reconstructing the ablative defect and delivering local adjuvant immunotherapy

    Similar works