research

Double-Layer No-Flow Underfill Process for Flip-Chip Applications

Abstract

©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.No-flow underfill technology shows potential advances over the conventional underfill technology toward a low-cost flop-chip underfill process. However, due to the filler entrapment in between solder bumps and contact pads on board, no-flow underfills are mostly unfilled or filled with very low filler loading. The high coefficient of thermal expansion (CTE) of the polymer material has significantly lowered the reliability of flip chip assembly and has limited its application to large chip assemblies. This paper presents a double-layer no-flow underfill process approach to incorporate silica filler into a no-flow underfill. Two layers of underfills are applied on to the substrate before chip placement. The bottom underfill layer facing the substrate is fluxed and unfilled; the upper layer facing the chip is filled with silica fillers. The total filler loading of the mixture is estimated to be around 55 wt%. The material properties of each layer of underfills, the underfill mixture, and a control unfilled underfill are characterized using differential scanning calorimeter (DCS), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA), and a stress rheometer. FB250 daisy-chained test chips are assembled on FR-4 boards using the novel approach. A 100% assembly yield of solder Interconnect is achieved with the double-layer no-flow underfill while in the single-layer no-flow underfill process, no solder joint yield is observed. Scanning electronic microscope (SEM) and optical microscope are used to investigate the cross-section of both assemblies. A US provisional patent has been filed for this invention

    Similar works