Modelling of the polarized cyclotron emission from magnetic cataclysmic variables (MCVs) has been a powerful technique for determining the structure of the accretion zones on the white dwarf. Until now, this has been achieved by constructing emission regions (for example arcs and spots) put in by hand, in order to recover the polarized emission. These models were all inferred indirectly from arguments based on polarization and X-ray light curves. Potter, Hakala & Cropper (1998) presented a technique (Stokes imaging) which objectively and analytically models the polarized emission to recover the structure of the cyclotron emission region(s) in MCVs. We demonstrate this technique with the aid of a test case, then we apply the technique to polarimetric observations of the AM Her system V347 Pav. As the system parameters of V347 Pav (for example its inclination) have not been well determined, we describe an extension to the Stokes imaging technique which also searches the system parameter space (GOSSIP)