CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Factors Released From Embryonic Stem Cells Stimulate C-Kit-Flk-1 \u3csup\u3e+Ve\u3c/sup\u3e Progenitor Cells And Enhance Neovascularization
Authors
Sumbul Fatma
Donald E. Selby
Dinender K. Singla
Reetu D. Singla
Publication date
15 December 2010
Publisher
'Information Bulletin on Variable Stars (IBVS)'
Abstract
We examined whether factors released from embryonic stem (ES) cells inhibit cardiac and vascular cell apoptosis and stimulate endogenous progenitor cells that enhance neovascularization with improved cardiac function. We generated and transplanted ES-conditioned medium (CM) in the infarcted heart to examine effects on cardiac and vascular apoptosis, activation of endogenous c-kit and FLK-1+ve cells, and their role in cardiac neovascularization. TUNEL, caspase-3 activity, immunohistochemistry, H&E, and Masson\u27s trichrome stains were used to determine the effect of transplanted ES-CM on cardiac apoptosis and neovascularization. TUNEL staining and caspase-3 activity confirm significantly (p\u3c0.05) reduced apoptosis in MI+ES-CM compared with MI+ cell culture medium. Immunohistochemistry demonstrated increased (p\u3c0.05, 53%) c-kit+ve and FLK-1+ve positive cells, as well as increased (p\u3c0.05, 67%) differentiated CD31-positive cells in ES-CM groups compared with respective controls. Furthermore, significantly (p\u3c0.05) increased coronary artery vessels were observed in ES-CM transplanted hearts compared with control. Heart function was significantly improved following ES-CM transplantation. Next, we observed significantly increased (p\u3c0.05) levels of c-kit activation proteins (HGF and IGF-1), anti-apoptosis factors (IGF-1 and total antioxidants), and neovascularization protein (VEGF). In conclusion, we suggest that ES-CM following transplantation in the infarcted heart inhibits apoptosis, activates cardiac endogenous c-kit and FLK-1+ve cells, and differentiates them into endothelial cells (ECs) that enhances neovascularization with improved cardiac function. © 2010 Mary Ann Liebert, Inc
Similar works
Full text
Available Versions
University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:stars.library.ucf.edu:scop...
Last time updated on 18/10/2022