Influence of Distillation System, Oak Wood Type, and Aging Time on Composition of Cider Brandy in Phenolic and Furanic Compounds

Abstract

A control of phenolic and furanic compounds in cider brandy was carried out during maturation in oak casks, studying three technological factors: distillation (rectification column vs double distillation), oak wood type (French vs American), and aging time (32 months). Gallic acid and benzoic and cinnamic aldehydes significantly increased during maturation of cider brandies, the highest level of these phenolics being obtained when aging was conducted in French oak casks. Benzoic acids increased during aging, though furanic compounds were not influenced by the time factor. Distillation and wood factors significantly influenced furanic concentration; 5-hydroxymethylfurfural not was detected in fresh spirits and was extracted in the highest proportion in French oak. Volatile furanics, such as 5-methylfurfural, furfural, and 2-furylmethyl ketone, were influenced by the distillation factor, with the use of the double distillation system producing a higher level of these compounds. Scopoletin was the majority coumarin detected in cider brandies, the highest yield of which was obtained with the use of American oak

    Similar works