Ontoloji tabanlı çok-etmenli sanal fabrika sisteminin tasarımı ve geliştirilmesi.

Abstract

Major developments in computers and information technologies, enable industrial and mechanical engineers to establish new net based, virtual collaboration platforms for enterprises. Benefiting from virtual enterprise platform enterprises will be able to combine their resources and capabilities on project based collaborations meanwhile protect their independent mainstream policies and secure their secret information. This concept is called virtual enterprise(VE). Virtual Enterprise (VE) is a collaboration model between multiple business partners in a value chain. The VE model is particularly feasible and appropriate for Small and Medium Enterprises (SME) and industry parks containing multiple SMEs that have different vertical competencies. One of the main targets of this research is to create an Ontology based Multi Agent Virtual Enterprise (OMAVE) System to prepare an appropriate platform for collaboration between technology start-ups in techno-parks and SMEs in Organized Industrial Zones in order to produce high value added high-tech products. OMAVE aims to help SMEs to shift from classic trend of manufacturing part pieces towards high-tech, innovative and research based products. In this way and to reach this goal a new semantic data infrastructure to enhance Re-Configurability and Flexibility of virtual enterprise systems has been developed. In order to support flexibility in Virtual Enterprise business processes and enhance its integration to enterprises' available manufacturing systems (e.g. MRP) an ontology based domain model of VE system has been established. OWL DL semantic data structure of VE by defining concepts, axioms, rules and functions in VE system has been developed. TDB data store to keep VE data and information in form of triples developed. SPARQL semantic RDF query language is used to handle and manipulate data on developed system data store. This architecture supports structure flexibility for developed VE infrastructure and improve reusability of data and knowledge in VE life cycle. To establish a multi agent based partner selection platform different agent types have been developed. These agents collaborate and compete with each other to select the most appropriate partner for the forthcoming VE project consortium. The agent based auctioning platform is coupled with a Fuzzy-AHP-TOPSIS multi criteria decision making algorithm to evaluate incoming bids from agents and rank proposals in each iteration. It is also important to notice that here, agents interaction's semantic is provided by an agent ontology. This agent ontology provides concepts, properties and all message formats for agents to settle a common language in interactions between agents. Implementing concurrent engineering, collaborative design and Product Life Cycle Management (PLM) concepts by integrating Dassault systems web based CATIA/ENOVIA V6 design and PLM tools to OMAVE system. To test and verify these achievements a case study to produce a test product by using developed OMAVE tools is established. This test product manufactured by contributions of SMEs from OSTIM organized Industrial Zone Aviation and Defense Cluster.Ph.D. - Doctoral Progra

    Similar works