Terahertz (THz) Algılama Uygulamaları için Oda Sıcaklığında Çalışan Deşarj Lambalarının Karekterizasyonu

Abstract

TÜBİTAK MFAG Proje01.03.2016İlk olarak 1970’lerde araştırılmaya başlayan bir konu olan deşarj lambaları kullanarak THz/milimetre dalga boyu algılama yöntemi günümüzde THz tekniklerine olan ilgi ile tekrar gündeme gelmiştir ve yakın zamanda kendi yaptığımız çalışmalar ile uluslararası alanda yoğun ilgi görmektedir. Yüksek basınçta bir gaz içinde oluşan deşarj sonucu ışıma yapan bu lambalar, oluşan plazma sayesinde ışıma yaparken THz dalga boylarına hassasiyet göstermektedir. Bu çalışmalar ilk olarak Prof. Dr. Natan Kopeika (Ben Gurion Üniversitesi, Nagev, Israil) tarafından gerçekleştirilmiştir. Kendi grubumuzda yaptığımız çalışmalar da bunu desteklemektedir, dahası kurduğumuz zamana dayalı THz ölçüm sistemleri ile yapısı ile ilintili özel THz frekanslarında bu yapıların rezonant etki gösterdiğini tespit eden ilk araştırma grubuyuz. MM dalga boyu/THz algılama için kullanılan bu tip lambaların ucuz olmaları, gerek oda sıcaklığında çalışırken THz dalga boylarını yüksek hassasiyetle tespit edebilmeleri, gerekse de plazmadan geçerken bazı THz frekansların kontrol edilerek filtreleyebilmesi bu tip yapıların farklı sivil ve savunma uygulamalarında kullanabileceklerini göstermektedir. Proje kapsamında yaptığımız çalışmalarda, deşarj lambalarında görülen bu rezonant etkilerin THz algılamadaki rolünü belirleyebilmek için ticari olarak satılan farklı lambaları hem zamana dayalı THz ölçüm sistemlerimiz ile hem de proje kapsamında geliştirdiğimiz sürekli ışıma yapan yüksek frekans THz ölçüm sistemleri ile karekterize ettik. İki türlü ışık kaynağı geliştirildi: 80-125GHz arası ışıma yapan, bu frekans tayfında 1GHz’lik dilimlerde 20mW ortalama güç üreten mm-dalga boyu ışın kaynağı ve 260-380GHz arası ışıma yapan, bu frekans tayfında 1GHz’lik dilimlerde 1mW ortalam güç üreten THz ışın kaynağı. Bu ışın kaynakların temelinde Schottky-diyot temeline dayalı çarpan yapıları süren frekans ayarlanbilir bir YIG osilatör mikrodalga kaynağı kullanılmıştır. MM dalga boyu kaynağı için 9-14GHz arası frekansı ayarlanabilen YIG osilatör kaynağını x9 toplam çarpan Schottky diyot temmelli RF bileşenler kullanıldı. THz frekanslarına ulaşmak için aynı kaynağa x3 çarpan bir Schottky temeline dayalı pasif çarpan bir diyot yapısı kullanıldı. İki sistem için frekansları hava boşluğuna taşımak için ayrı horn antenler kullanıldı. MM dalga boyu ışın kaynağı için konik bir horn anten yapısı kullanılırken, THz ışın kaynağı için piarmit horn anten yapısı kullanıldı. Dağılan ışın kaynağın Gaussiyen ışın dağılımı görünüşünü plano-konveks mercekler kullanarak topladık ve deşarj lamba yapısına odakladık. Deneylerin bir sürümünde deşarj lamba yapısını detektör olarak kullandık, diğer bir sürümünde ise içinden geçen frekansların şiddetlerini bir Golay Cell detetktör yardımıyla ölçtük. 2 THz üretici ve deşarj lamba kullanan alıcı sistemleri geliştirdik, sonra zamana dayalı THz ölçüm sistemlerin deşarj lambalarını daha iyi karekterize edebilmeleri için optimize ettik ve THz dalga boylarının deşarj ortamındaki plazma ile etkileşimini anlamak için benzetim çalışmaları geliştirdik. Bu çalışmalar sonucu rezonant etkilerin THz algılamadaki rolünü belirleyerek bu tip yapıların THz uygulamalarında nasıl ve nerede kullanabileceklerini daha iyi anladık. Deşarj lambaları ışın algılama için kullanıldığında literatürde “Glow Discharge Detector (GDD)” olarak adlandırılmaktadır. GDD lambaları ile bu ölçümlerde şu sonuçları elde ettik: GDD lambaları detektör olarak hem mm dalga boyları hem de THz frekansları için ışının kutuplaşma yönüne hassas (anot-katot arası elektrik alan yönü ışın elektrik alanına paralel ya da anti pararlel olduğu durumlarda algıladığı sinyal maksimum, dikay olduğu durumlarda algıladığın sinyal minimum) GDD lambaları hem optik eksene paralel hem de optik eksene dik konumda mm dalga boyu/THz ışınlarını algılayabiliyor GDD lamba detektör hassasiyeti iki frekans aralığı için neredeyse Golay Cell cihazına eşit (nW/Hz-1/2) GDD lambaları detektör olarak kullanıldığında ışın kaynağına genlik modülasyon uygulamak gerekiyor (“Amplitude Modulation (AM)”); 90kHz modülasyon frekansı için algıladığı sinyal en büyük olarak ölçüldü. Ekipmanların limitasyonları nedeniyle daha yüksek modülasyon frekansları araştırılamadı, bu frekansın MHz civarı olduğunu tahmin ediyoruz Optimize edilen zamana dayalı THz ölçüm sistemleri ve kurulan sürekli THz ışın kaynağı sistemleri ile yaptığımız ölçümlerde anot-katot arası mesafenin belli frekansların yapıdan geçişini etkilediğini gözlemledik. Genel olarak ticari olarak satın alınabilen deşarj lambaların anot-katot arası mesafesinin yaklaşık olarak 1mm olması ile etkileştiği rezonant frekans tayfın 250- 350GHz arası frekanslara denk düşmesi şu sonucu destekliyor: ışın ile plazmanın etkileşiminı arttırmak için anot-katot arası mesafesi dalga boyu ile orantılı olmalı. CST Microwave Studio programını kullanarak yaptığımız ilk benzetim çalışmalarında anot-katot arası mesafeye bağlı olarak plazmanın dielektrik fonsiyonu deşarj sırasında belli frekans aralıkları için minimum geçiş gösterdi. Bu çalışmaların üzerinde yoğunlaşarak anot-katot geometrisini optimize etmeyi hedefliyoruz. Yukarıda alınan sonuçların bir kısmı uluslararası konferansta tam makale bildiri olarak yayınlandı, diğer bir kısmı ise uluslararası (SCI-E) hakemli bir dergide yayınlandı. Projede 3 yapılan çalışmalar bir yüksek lisans öğrencisinin tez çalışmalarını destekledi diğer lisans, doktora düzeydeki öğrencilerin de araştırmalarını destekledi. Dünyada son zamanlarda yoğun ilgi ile araştırılan bariyer arkası görüntüleme sektörü için ucuz, oda sıcaklığında yüksek hassasiyetle çalışan THz detektör teknolojilerin geliştirilmesi eşi benzeri olmayan bir katkı sağlayacağına inanmaktayız. Ülkemizde terör olayları ve benzeri negatif unsurlar karşısında savunma ağırlıklı tespit ve imha teknolojileri kapsamında bu tip detektörlerin önemli bir katkı sağlayacağı ortak görüşündeyiz.First started in the 1970s, which was to use glow discharge lamps to detect THz and millimeter waves has become relevant again in the international arena due to the high interest in developing THz technologies and our recent work in this area. By forming the discharge in a gas kept at high pressure between two leads the lamp generates light, meanwhile the plasma formed drives the device to be sensitive to detection of THz and/or millimeter waves. These investigations were first carried out by Prof. Dr. Natan Kopeika (Ben Gurion University, Nagev, Israel) and his team. Our investigations not only support this, but we were also the first research group to see resonant effects due to the structure of the glow discharge lamp in the THz frequency range. Their low cost coupled with the ability to detect THz waves with high sensitivity at room temperature, or the resonant effects which may point to their potential use as controllable filters shows that these devices can be used in a variety of civilian and defense applications. In this project we investigated using both THz time-domain spectroscopy systems and continuous wave THz systems the role of resonant effects in the detection of THz waves by glow discharge lamps was ınvestigated. Two type of sources were developed: A source emitting in the 80-125GHz spectral region with at least 20mW output power per each 1GHz band and a source emitting in the 260-280GHz spectral range with at least 1mW output power per each 1GHz band in the emission. These sources are based on Schottky-diode based multipliers driven by a frequency tunable YIG oscillator. In the mm-wave source the 9-14GHz tunable YIG oscillator was multiplied (x9) using Schottky diode based RF multipliers. The same source was multiplied by x3 passive multiplier to reach THz frequencies. In both systems horn antennas were used to carry the emission into free space. A conical horn was used for the mm-wave source and a pyramid horn was used for the THz source. The emitted beam had a Gaussian beam profile which was collimated and focused on to the discharge lamp using plano convex lenses. In one embodiment of the experiments the discharge lamp was used as a detector and in one other the transmitted waves through the lamps structure was measured using a Golay Cell. In summary, THz emitter and detector systems based on discharge lamps were constructed and then time-domain THz systems were optimized to characterize these lamps. Furthermore to better understand the THz-wave plasma interaction simulations were performed. These investigations allowed us to better understand how the lamp detects THz waves and also helped us understand where and how to better use such devices. İn the 5 literature discharge lamps when used for light detection are typically called Glow Discharge Detectors (GDD). Using GDD lamps these results were obtained: The GDD lamps when used for detection of THz and mm-waves were found to be sensitive to the direction of the impinging E-Field polarization. (When the anodecathode electric field was parallel or antiparallel the detected signal was maximized, when perpendicular the detected signal was minimized). GDD lamps were able to detect mm-wave/THz radiation for when the structure was parallel and perpendicular to the optical axis. The GDD lamp sensitivity in direct detection was almost equal to a Golay Cell (nW/Hz-1/2) When using GDD lamps as detectors one needs to modulate the source (“Amplitude Modulation (AM)”); the signal response was maximized for a modulation frequency of 90 kHz. Due to the limitations in the detection electronics the response is thought to maximize at higher modulation (MHz) Using optimized THz time-domain spectroscopy systems and CW THz systems we showed that the anode-cathode separation plays a role in the transmission of certain mm-wave/THz frequencies. Since the anode-cathode separation of commercially available discharge lamps are on the order of 1mm, the resonant frequency measured upon transmission fell into the 250-350GHz frequency range which suggests that to increase the interaction of the plasma with the far infrared light one needs to tune the separation on the order of the incoming wavelength Using the commercially available software CST Microwave Studio our first simulation attempts have shown that the transmission of the field decreases for certain frequencies dependent on the anode-cathode separation as well as the dielectric properties of the plasma. We hope to improve these simulations thereby allowing us to better design the anode-cathode geometry to optimize detectivity The results as outlined above have resulted in the publication of one international conference proceeding and one international journal article (SCI-E). The research undertaken in this project directly contributed to the Masters’ thesis of one student and the studies of other doctoral, masters’ and undergraduate students. We believe that cost effective, room temperature THz detectors will have a great impact on the development of behind the barrier (see-through) imaging systems in the world. The 6 development of these technologies will be most beneficial to in Turkey, who has a vested interest in developing detection and threat elimination systems with the ever continuing threat of terror related incidents in our country

    Similar works