Doctor of Philosophy

Abstract

dissertationEmbedded systems are often deployed in a variety of mission-critical fields, such as car control systems, the artificial pace maker, and the Mars rover. There is usually significant monetary value or human safety associated with such systems. It is thus desirable to prove that they work as intended or at least do not behave in a harmful way. There has been considerable effort to prove the correctness of embedded systems. However, most of this effort is based on the assumption that embedded systems do not have any peripheral devices and interrupt handling. This is too idealistic because embedded systems typically depend on some peripheral devices to provide their functionality, and in most cases these peripheral devices interact with the processor core through interrupts so that the system can support multiple devices in a real time fashion. My research, which focuses on constrained embedded systems, provides a framework for verifying realistic device driver software at the machine code level. The research has two parts. In the first part of my research, I created an abstract device model that can be plugged into an existing formal semantics for an instruction set architecture. Then I instantiated the abstract model with a model for the serial port for a real embedded processor, and plugged it into the ARM6 instruction set architecture (ISA) model from the University of Cambridge, and verified full correctness of a polling-based open source driver for the serial port. In the second part, I expanded the abstract device model and the serial port model to support interrupts, modified the latest ARMv7 model from the University of Cambridge to be compatible with the abstract device model, and extended the Hoare logic from the University of Cambridge to support hardware interrupt handling. Using this extended tool chain, I verified full correctness of an interrupt-driven open source driver for the serial port. To the best of my knowledge, this is the first full correctness verification of an interrupt-driven device driver. It is also the first time a device driver with inherent timing constraints has been fully verified. Besides the proof of full correctness for realistic serial port drivers, this research produced an abstract device model, a formal specification of the circular bu er at assembly level, a formal specification for the serial port, a formal ARM system-on-chip (SoC) model which can be extended by plugging in device models, and the inference rules to reason about interrupt-driven programs

    Similar works