HIBISCUS ROSA SINENSIS LOADED SOLID LIPID NANOPARTICLES AND IN VIVO WOUND HEALING ACTIVITY IN WISTAR ALBINO RATS

Abstract

Objective: The objective of the present research was to investigate the wound-healing potency of solid lipid nano particles of Hibiscus rosa sinensis extract. Crude herbal extracts and rudimentary formulations containing herbal extracts are good for demonstrating the feasibility of the concept; however, such formulations suffer with poor oral bioavailability and variability within groups of subjects. Converting herbal extracts into novel drug delivery systems may prove effective in addressing some of these problems. Methods: In the present study an attempt was made to develop Hibiscus rosa sinensis extract loaded solid lipid nanoparticles (HSLNs) using lipids glycerol monostearate (GMS) or beeswax. The prepared HSLNs were characterised for their size, surface charge and morphology. The optimized HSLNs were incorporated into Carbopol gel and tested for wound healing activity in male Wistar albino rats using excision wound model. Results: HSLNs of ~175 nm in size carrying negative charge were obtained with the optimised procedure using beeswax. The shape of the HSLNs was nearly spherical. The HSLNs (10 mg/ml) treated wounds healed much faster compared to raw crude extract and healing was comparable to marketed preparation. Conclusion: It is concluded that converting crude herbal extracts into SLNs can be an effective way to enhance the effectiveness of herbal extracts and their in vivo activity

    Similar works