Design of a Transradial Myoelectric Prosthesis

Abstract

Due to the rapid growth of children and the high cost of myoelectric technology, children are not given the same opportunities to use myoelectric prosthetics as adults. The Muscle Activated Prosthesis (MAP) team is developing an affordable, transradial, myoelectric prosthetic for a thirteen-year-old girl. The MAP team is designing a myoelectric prosthetic that will cost under $1,000, over 90% less than custom myoelectric devices on the market. This device has an EMG sensor, a microprocessor, a printed circuit board (PCB), linear actuator motors, and a battery organized within a 3D-printed transradial prosthesis to open and close the hand grip when the EMG detects electrical signals via muscle contractions in the client’s flexor carpi radialis. Currently, the team has fully assembled a prosthetic prototype and will obtain feedback from the partner, Ability Prosthetics, and the client to deliver a final prototype. This poster details the recent mechanical and electrical design optimizations, grip strength testing, and integration of mechanical and electrical components to build the current functioning prosthesis.https://mosaic.messiah.edu/engr2021/1009/thumbnail.jp

    Similar works