UAVs - Unmanned Aerial Vehicles – have gained significant attention recently, due to the increasingly growing range of applications. However, developing collaborative UAV applications using traditional technologies in a tightly coupled design requires a great deal of development effort, time, and budget especially for heterogeneous UAVs. Moreover, monitoring and accessing UAV resources using traditional communication media suffer from several restrictions and limitations. This research aims to simplify the efforts, reduce the time, and lower the costs of developing collaborative applications for distributed heterogeneous UAVs. In addition, the research aims to provide ubiquitous UAV resources access. A platform is proposed for developing distributed UAVs. This platform provides services to simplify application development. In this approach, UAVs are integrated with the Cloud Computing paradigm to provide ubiquitous access to their resources and services. Due to the limited capabilities of UAVs, a lightweight architecture is adopted. UAV resources and services are modeled in a Resource Oriented Architecture which is a new flexible web service design pattern with loosely coupled interaction between services. Hence, they are accessed as Representational State Transfer RESTful services using HTTP. Moreover, the research proposes using a broker architecture to increase efficiency by separating responsibilities. Therefore, it separates the requester’s logic and functionalities from the provider’s. It also takes the responsibility for allocating the issued request to the available and suitable UAV(s). To test the proposed platform, I first developed the UAV resources as a payload subsystem then provided them with Internet connectivity. Then, resource identifiers and uniform interfaces were developed using the RESTful Application Programming Interfaces (APIs). I also developed the broker service along with a database containing the information of the registered UAVs and their resources. The platform system components were tested using a requester interface in a browser by issuing a request for a resource to the broker to find and request the service from a suitable UAV. The test was done for retrieving data from UAVs as well as requesting actions from them. The main contributions of this research are proposing the UAV-Cloud platform for simplifying the development of ubiquitous UAV applications and its vii perspectives, as well as a lightweight loosely coupled design for UAV resources. Another contribution is developing the broker architecture for separating responsibilities in this platform