Identification and characterization of novel factors in the DNA damage response

Abstract

All cellular organisms contain genomic DNA which provides the instructions for their correct development and functioning. Damage to this DNA may interfere with critical cellular processes such as transcription and replication and has the potential to drive mutagenesis. In turn, this may underlie inherited disorders and accelerate progression of diseases such as cancer and neurodegenerative disorders. The protection of cells and organisms against these devastating effects of DNA damage relies on the DNA damage response (DDR), which comprises a complex network of signaling and repair pathways that coordinate the sensing, signaling and repair of DNA lesions while accommodating suitable adjustments in for instance chromatin structure and cell cycle progression. Not only does the DDR dictate the appropriate repair pathway for several types of DNA damage, including DNA double-strand breaks (DSB), it also modulates replication fork surveillance mechanisms in response to DNA replication stress (RS). While many core proteins have been studied in detail, the full repertoire of factors involved in these pathways remains unknown. Clearly, extending our knowledge on regulators of the DDR will contribute to our understanding of the development, and possibly the treatment, of the numerous disorders that are associated with defects in the DDR. The research described in this thesis has successfully identified and characterized novel factors in DSB repair and the RS response.LUMC / Geneeskund

    Similar works