AIMS (American Institute of Mathematical Sciences)
Abstract
In this article we are concerned with the existence of traveling wave solutions of a general class of nonlocal wave equations: utt - a^2uxx = (beta* u^p)xx, p > 1. Members of the class arise as mathematical models for the propagation of waves in a wide variety of situations. We assume that the kernel beta is a bell-shaped function satisfying some mild differentiability and growth conditions. Taking advantage of growth properties of bell-shaped functions, we give a simple proof for the existence of bell-shaped traveling wave solutions