Replica placement in peer-to-peer systems

Abstract

In today’s distributed applications, replica placement is essential since moving the data in the vicinity of an application will provide many benefits. The increasing requirements of data for scientific applications and collaborative access to these data make data placement even more important. Until now, replication is one of the main mechanisms used in distributed data whereby identical copies of data are generated and stored at various distributed sites to improve data access performance and data availability. Most work considers file’s popularity as one of the important parameters taken into consideration when designing replica placement strategies. However, this thesis argues that a combination of popularity and affinity files are the most important parameters which can be used in decision making whilst improving data access performance and data availability in distributed environments. A replica placement mechanism called Affinity Replica Placement Mechanism (ARPM) is proposed focusing on popular files and affinity files. The idea of ARPM is to improve data availability and accessibility in peer-to-peer (P2P) replica placement strategy. A P2P simulator, PeerSim, was used to evaluate the performance of this dynamic replica placement strategy. The simulation results demonstrated the effectiveness of ARPM hence provided a proof that ARPM has contributed towards a new dimension of replica placement strategy that incorporates the affinity and popularity of files replicas in P2P systems

    Similar works