COMPROF and COMPLACE : shared-memory communication profiling and automated thread placement via dynamic binary instrumentation

Abstract

Funding: This work was generously supported by UK EPSRC Energise, grant number EP/V006290/1.This paper presents COMPROF and COMPLACE, a novel profiling tool and thread placement technique for shared-memory architectures that requires no recompilation or user intervention. We use dynamic binary instrumentation to intercept memory operations and estimate inter-thread communication overhead, deriving (and possibly visualising) a communication graph of data-sharing between threads. We then use this graph to map threads to cores in order to optimise memory traffic through the memory system. Different paths through a system's memory hierarchy have different latency, throughput and energy properties, COMPLACE exploits this heterogeneity to provide automatic performance and energy improvements for multi-threaded programs. We demonstrate COMPLACE on the NAS Parallel Benchmark (NPB) suite where, using our technique, we are able to achieve improvements of up to 12% in the execution time and up to 10% in the energy consumption (compared to default Linux scheduling) while not requiring any modification or recompilation of the application code.Postprin

    Similar works