Analysis and Numerics of Stochastic Gradient Flows

Abstract

In this thesis we study three stochastic partial differential equations (SPDE) that arise as stochastic gradient flows via the fluctuation-dissipation principle. For the first equation we establish a finer regularity statement based on a generalized Taylor expansion which is inspired by the theory of rough paths. The second equation is the thin-film equation with thermal noise which is a singular SPDE. In order to circumvent the issue of dealing with possible renormalization, we discretize the gradient flow structure of the deterministic thin-film equation. Choosing a specific discretization of the metric tensor, we resdiscover a well-known discretization of the thin-film equation introduced by Grün and Rumpf that satisfies a discrete entropy estimate. By proving a stochastic entropy estimate in this discrete setting, we obtain positivity of the scheme in the case of no-slip boundary conditions. Moreover, we analyze the associated rate functional and perform numerical experiments which suggest that the scheme converges. The third equation is the massive φ24\varphi^4_2-model on the torus which is also a singular SPDE. In the spirit of Bakry and Émery, we obtain a gradient bound on the Markov semigroup. The proof relies on an L2L^2-estimate for the linearization of the equation. Due to the required renormalization, we use a stopping time argument in order to ensure stochastic integrability of the random constant in the estimate. A postprocessing of this estimate yields an even sharper gradient bound. As a corollary, for large enough mass, we establish a local spectral gap inequality which by ergodicity yields a spectral gap inequality for the φ24\varphi^4_2- measure

    Similar works