Surface Reconstruction From 3D Point Clouds

Abstract

The triangulation of a point cloud of a 3D object is a complex problem, since it depends on the complexity of the shape of such object, as well as on the density of points generated by a specific scanner. In the literature, there are essentially two approaches to the reconstruction of surfaces from point clouds: interpolation and approximation. In general, interpolation approaches are associated with simplicial methods; that is, methods that directly generate a triangle mesh from a point cloud. On the other hand, approximation approaches generate a global implicit function — that represents an implicit surface — from local shape functions, then generating a triangulation of such implicit surface. The simplicial methods are divided into two families: Delaunay and mesh growing. Bearing in mind that the first of the methods presented in this dissertation falls under the category of mesh growing methods, let us focus our attention for now on these methods. One of the biggest problems with these methods is that, in general, they are based on the establishment of dihedral angle bounds between adjacent triangles, as needed to make the decision on which triangle to add to the expansion mesh front. Typically, other bounds are also used for the internal angles of each triangle. In the course of this dissertation, we will see how this problem was solved. The second algorithm introduced in this dissertation is also a simplicial method but does not fit into any of the two families mentioned above, which makes us think that we are in the presence of a new family: triangulation based on the atlas of charts or triangle stars. This algorithm generates an atlas of the surface that consists of overlapping stars of triangles, that is, one produces a total surface coverage, thus solving one of the common problems of this family of direct triangulation methods, which is the appearance of holes or incomplete triangulation of the surface. The third algorithm refers to an implicit method, but, unlike other implicit methods, it uses an interpolation approach. That is, the local shape functions interpolate the points of the cloud. It is, perhaps, one of a few implicit methods that we can find in the literature that interpolates all points of the cloud. Therefore, one of the biggest problems of the implicit methods is solved, which has to do with the smoothing of the surface sharp features resulting from the blending of the local functions into the global function. What is common to the three methods is the interpolation approach, either in simple or implicit methods, that is, the linearization of the surface subject to reconstruction. As will be seen, the linearization of the neighborhood of each point allows us to solve several problems posed to the surface reconstruction algorithms, namely: point sub‐sampling, non‐uniform sampling, as well as sharp features.A triangulação de uma nuvem de pontos de um objeto 3D é um problema complexo, uma vez que depende da complexidade da forma desse objeto, assim como da densidade dos pontos extraídos desse objeto através de um scanner 3D particular. Na literatura, existem essencialmente duas abordagens na reconstrução de superfícies a partir de nuvens de pontos: interpolação e aproximação. Em geral, as abordagens de interpolação estão associadas aos métodos simpliciais, ou seja, a métodos que geram diretamente uma malha de triângulos a partir de uma nuvem de pontos. Por outro lado, as abordagens de aproximação estão habitualmente associadas à geração de uma função implícita global —que representa uma superfície implícita— a partir de funções locais de forma, para em seguida gerar uma triangulação da dita superfície implícita. Os métodos simpliciais dividem‐se em duas famílias: triangulação de Delaunay e triangulação baseada em crescimento progressivo da triangulação (i.e., mesh growing). Tendo em conta que o primeiro dos métodos apresentados nesta dissertação se enquadra na categoria de métodos de crescimento progressivo, foquemos a nossa atenção por ora nestes métodos. Um dos maiores problemas destes métodos é que, em geral, se baseiam no estabelecimento de limites de ângulos diédricos (i.e., dihedral angle bounds) entre triângulos adjacentes, para assim tomar a decisão sobre qual triângulo acrescentar à frente de expansão da malha. Tipicamente, também se usam limites para os ângulos internos de cada triângulo. No decorrer desta dissertação veremos como é que este problema foi resolvido. O segundo algoritmo introduzido nesta dissertação também é um método simplicial, mas não se enquadra em nenhuma das duas famílias acima referidas, o que nos faz pensar que estaremos na presença de uma nova família: triangulação baseada em atlas de vizinhanças sobrepostas (i.e., atlas of charts) ou estrelas de triângulos (i.e., triangle star). Este algoritmo gera um atlas da superfície que é constituído por estrelas sobrepostas de triângulos, ou seja, produz‐se a cobertura total da superfície, resolvendo assim um dos problemas comuns desta família de métodos de triangulação direta que é o do surgimento de furos ou de triangulação incompleta da superfície. O terceiro algoritmo refere‐se a um método implícito, mas, ao invés de grande parte dos métodos implícitos, utiliza uma abordagem de interpolação. Ou seja, as funções locais de forma interpolam os pontos da nuvem. É, talvez, um dos poucos métodos implícitos que podemos encontrar na literatura que interpola todos os pontos da nuvem. Desta forma resolve‐se um dos maiores problemas dos métodos implícitos que é o do arredondamento de forma resultante do blending das funções locais que geram a função global, em particular ao longo dos vincos da superfície (i.e., sharp features). O que é comum aos três métodos é a abordagem de interpolação, quer em métodos simpliciais quer em métodos implícitos, ou seja a linearização da superfície sujeita a reconstrução. Como se verá, a linearização da vizinhança de cada ponto permite‐nos resolver vários problemas colocados aos algoritmos de reconstrução de superfícies, nomeadamente: sub‐amostragem de pontos (point sub‐sampling), amostragem não uniforme (non‐uniform sampling), bem como formas vincadas (sharp features)

    Similar works