A multi-physics method for fracture and fragmentation at high strain-rates

Abstract

This work outlines a diffuse interface method for the study of fracture and fragmentation in ductile metals at high strain-rates in Eulerian finite volume simulations. The work is based on an existing diffuse interface method capable of simulating a broad range of different multi-physics applications, including multi-material interaction, damage and void opening. The work at hand extends this method with a technique to model realistic material inhomogeneities, and examines the performance of the method on a selection of challenging problems. Material inhomogeneities are included by evolving a scalar field that perturbs a material's plastic yield stress. This perturbation results in non-uniform fragments with a measurable statistical distribution, allowing for underlying defects in a material to be modelled. As the underlying numerical scheme is three dimensional, parallelisable and multi-physics-capable, the scheme can be tested on a range of strenuous problems. These problems especially include a three-dimensional explosively driven fracture study, with an explicitly resolved condensed phase explosive. The new scheme compares well with both experiment and previous numerical studies

    Similar works

    Full text

    thumbnail-image

    Available Versions