Evaluating Point Cloud Quality via Transformational Complexity

Abstract

Full-reference point cloud quality assessment (FR-PCQA) aims to infer the quality of distorted point clouds with available references. Merging the research of cognitive science and intuition of the human visual system (HVS), the difference between the expected perceptual result and the practical perception reproduction in the visual center of the cerebral cortex indicates the subjective quality degradation. Therefore in this paper, we try to derive the point cloud quality by measuring the complexity of transforming the distorted point cloud back to its reference, which in practice can be approximated by the code length of one point cloud when the other is given. For this purpose, we first segment the reference and the distorted point cloud into a series of local patch pairs based on one 3D Voronoi diagram. Next, motivated by the predictive coding theory, we utilize one space-aware vector autoregressive (SA-VAR) model to encode the geometry and color channels of each reference patch in cases with and without the distorted patch, respectively. Specifically, supposing that the residual errors follow the multi-variate Gaussian distributions, we calculate the self-complexity of the reference and the transformational complexity between the reference and the distorted sample via covariance matrices. Besides the complexity terms, the prediction terms generated by SA-VAR are introduced as one auxiliary feature to promote the final quality prediction. Extensive experiments on five public point cloud quality databases demonstrate that the transformational complexity based distortion metric (TCDM) produces state-of-the-art (SOTA) results, and ablation studies have further shown that our metric can be generalized to various scenarios with consistent performance by examining its key modules and parameters

    Similar works

    Full text

    thumbnail-image

    Available Versions