Full-reference point cloud quality assessment (FR-PCQA) aims to infer the
quality of distorted point clouds with available references. Merging the
research of cognitive science and intuition of the human visual system (HVS),
the difference between the expected perceptual result and the practical
perception reproduction in the visual center of the cerebral cortex indicates
the subjective quality degradation. Therefore in this paper, we try to derive
the point cloud quality by measuring the complexity of transforming the
distorted point cloud back to its reference, which in practice can be
approximated by the code length of one point cloud when the other is given. For
this purpose, we first segment the reference and the distorted point cloud into
a series of local patch pairs based on one 3D Voronoi diagram. Next, motivated
by the predictive coding theory, we utilize one space-aware vector
autoregressive (SA-VAR) model to encode the geometry and color channels of each
reference patch in cases with and without the distorted patch, respectively.
Specifically, supposing that the residual errors follow the multi-variate
Gaussian distributions, we calculate the self-complexity of the reference and
the transformational complexity between the reference and the distorted sample
via covariance matrices. Besides the complexity terms, the prediction terms
generated by SA-VAR are introduced as one auxiliary feature to promote the
final quality prediction. Extensive experiments on five public point cloud
quality databases demonstrate that the transformational complexity based
distortion metric (TCDM) produces state-of-the-art (SOTA) results, and ablation
studies have further shown that our metric can be generalized to various
scenarios with consistent performance by examining its key modules and
parameters