Nitrogen-vacancy singlet manifold ionization energy

Abstract

The singlet states of the negatively-charged nitrogen-vacancy centers in diamond play a key role in its optical spin control and readout. In this work, the hitherto unknown ionization energy of the singlet is measured experimentally and found to be between 1.91-2.25 eV. This is obtained by analyzing photoluminescence measurements incorporating spin control and NV charge state differentiation, along with simulations based on the nitrogen-vacancy's master equation. This work establishes a protocol for a more accurate estimate of this ionization energy, which can possibly lead to improved read-out methods

    Similar works

    Full text

    thumbnail-image

    Available Versions