M\"{o}bius Homogeneous Hypersurfaces in Sn+1\mathbb{S}^{n+1}

Abstract

Let M(Sn+1)\mathbb{M}(\mathbb{S}^{n+1}) denote the M\"{o}bius transformation group of the (n+1)(n+1)-dimensional sphere Sn+1\mathbb{S}^{n+1}. A hypersurface x:Mnβ†’Sn+1x:M^n\to \mathbb{S}^{n+1} is called a M\"{o}bius homogeneous hypersurface if there exists a subgroup GG of M(Sn+1)\mathbb{M}(\mathbb{S}^{n+1}) such that the orbit Gβ‹…p=x(Mn),p∈x(Mn)G\cdot p=x(M^n), p\in x(M^n). In this paper, the M\"{o}bius homogeneous hypersurfaces are classified completely up to a M\"{o}bius transformation of Sn+1\mathbb{S}^{n+1}.Comment: 35 pages, comments welcom

    Similar works

    Full text

    thumbnail-image

    Available Versions