Abstract

Objective We investigated whether PPAR? modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPAR? activation. Methods Mice with adipocyte deletion of one or two PPAR? copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15?mg/kg/day, 14?days) were evaluated for glucose and BCAA homeostasis. Results Adipocyte deletion of one PPAR? copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain ?-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPAR? copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPAR? deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. Conclusions PPAR?, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPAR? agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation

    Similar works

    Full text

    thumbnail-image