Recent advances in process analytical technologies and modelling techniques present opportunities to improve industrial chromatography control strategies to enhance process robustness, increase productivity and move towards real-time release testing. This paper provides a critical overview of batch and continuous industrial chromatography control systems for therapeutic protein purification. Firstly, the limitations of conventional industrial fractionation control strategies using in-line UV spectroscopy and on-line HPLC are outlined. Following this, an evaluation of monitoring and control techniques showing promise within research, process development and manufacturing is provided. These novel control strategies combine rapid in-line data capture (e.g. NIR, MALS and variable pathlength UV) with enhanced process understanding obtained from mechanistic and empirical modelling techniques. Finally, a summary of the future states of industrial chromatography control systems is proposed, including strategies to control buffer formulation, product fractionation, column switching and column fouling. The implementation of these control systems improves process capabilities to fulfil product quality criteria as processes are scaled, transferred and operated, thus fast tracking the delivery of new medicines to market