Optimizing Transportation Systems with Information Provision, Personalized Incentives and Driver Cooperation

Abstract

Poor performance of the transportation systems has many detrimental effects such as higher travel times, increased travel costs, higher energy consumption, and greenhouse gas emissions, etc. This thesis optimizes the transportation systems by addressing the traffic congestion problem and climate change impact resulting from the inefficient operation of these systems. I first focus on the key player of the transportation systems e.g., human being/traveler, and model travelers\u27 route choice behavior with real-time information. In this study, I define looking-ahead behavior in route choice as a traveler\u27s taking into account future diversion possibilities enabled by real-time information in a network with random travel times. Subjects participated in route-choice experiments in a driving simulator as well a PC-based environment. Three types of maps in increasing levels of complexity and information availability are used. Aggregate data analysis shows that network complexity negatively affects subjects\u27 ratio of choosing the risky route given an experiment environment. Higher cognitive load in the driving simulator results in a higher level of risk aversion than in the PC-based environment for the simplest map. I specify and estimate a mixed logit model with two latent classes, looking-ahead and myopic, taking into account the panel effect. The estimated latent class membership function suggests that some subjects can look ahead while others are myopic in making their route choices, and drivers learn to look ahead over time. The experiment environment plays a role in the risk attitude of myopic subjects. A bias against information is found for subjects who look ahead, however, is not significant among myopic subjects. I then shift my focus to influencing the travel patterns of individual travelers to reduce the energy and environmental impacts of the transportation sector. I present the system optimization (SO) framework of Tripod, an integrated bi-level transportation management system aimed at maximizing energy savings of the multi-modal transportation systems. From the user\u27s perspective, Tripod is a smartphone app, accessed before performing trips. The app proposes a series of alternatives each with an amount of tokens which the user can later redeem for goods or services. The role of SO is to compute the optimized set of tokens associated to the available alternatives, in order to minimize the system-wide energy consumption, under a limited token budget. I present a method to solve this complex optimization problem and describe the system architecture, the multimodal simulation-based optimization model and the heuristic method for the on-line computation of the optimized token allocation. I then present the framework with the simulation results. Finally, I optimize the systems travel time by addressing the equity issue of congestion pricing. I propose an alternative approach to an equitable and Pareto-improving transportation systems based on cooperation among travelers assisted by defector penalty. Theoretical analysis shows the existence condition of the cooperative scheme for heterogeneous value of time (VOT) of travelers. I formulate a mathematical programming problem for the optimal cooperative scheme problem in a general network with Pareto-improving constraints and practical considerations on the length the cooperation cycle. I then conduct computational tests on a simple network and evaluate the solutions in terms of efficiency improvement (total system travel time) and equitability (Gini index)

    Similar works