Scalable RTI-Based Parallel Simulation of Networks

Abstract

©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the Seventeenth Workshop on Parallel and Distributed Simulation (PADS 03), 2003Federated simulation interfaces such as the High Level Architecture (HLA) were designed for interoperability, and as such are not traditionally associated with high performance computing. In this paper, we present results of a case study examining the use of federated simulations using runtime infrastructure (RTI) software to realize large-scale parallel network simulators. We examine the performance of two different federated network simulators, and describe RTI performance optimizations that were used to achieve efficient execution. We show that RTI-based parallel simulations can scale extremely well and achieve very high speedup. Our experiments yielded more than 80-fold scaled speedup in simulating large TCP/IP networks, demonstrating performance of up to 6 million simulated packet transmissions per second on a Linux cluster. Networks containing up to two million network nodes (routers and end systems) were simulated

    Similar works