The (human) respiratory rate at rest

Abstract

All schoolchildren know how often they breathe, but even experts don't know exactly why. The aim of this publication is to develop a model of the resting spontaneous breathing rate using physiological, physical and mathematical methods with the aid of the principle that evolution pushes physiology in a direction that is as economical as possible. The respiratory rate then follows from an equation with the parameters CO2-production rate of the organism, resistance, static compliance and dead space of the lungs, the inspiration duration: expiration duration - ratio and the end-expiratory CO2 fraction. The derivation requires exclusively secondary school mathematics. Using the example of an adult human or a newborn child, data from the literature then result in normal values for their breathing rate at rest. The reason for the higher respiratory rate of a newborn human compared to an adult is the relatively high CO2-production rate together with the comparatively low compliance of the lungs. A side result is the fact that the common alveolar pressure throughout the lungs and the common time constant is a consequence of the economical principle as well. Since the above parameters are not human-specific, there is no reason to assume that the above equation could not also be applicable to many animals breathing through lungs within a thorax, especially mammals. Not only physiology and biology, but also medicine, could benefit: Applicability is being discussed in pulmonary function diagnostics, including pathophysiology. However, the present publication only claims to be a theoretical concept for the spontaneous quiet breathing rate. In the absence of comparable animal data, this publication is intended to encourage further scientific tests.Comment: 41 pages, 6 figures, 4 table

    Similar works

    Full text

    thumbnail-image

    Available Versions