Phase-locked photon-electron interaction without a laser

Abstract

Ultrafast electron-photon spectroscopy in electron microscopes commonly requires ultrafast laser setups. Photoemission from an engineered electron source is used to generate pulsed electrons, interacting with a sample that is excited by the ultrafast laser pulse at a specified time delay. Thus, developing an ultrafast electron microscope demands the exploitation of extrinsic laser excitations and complex synchronization schemes. Here, we present an inverse approach based on cathodoluminescence spectroscopy to introduce internal radiation sources in an electron microscope. Our method is based on a sequential interaction of the electron beam with an electron-driven photon source (EDPHS) and the investigated sample. An electron-driven photon source in an electron microscope generates phase-locked photons that are mutually coherent with the near-field distribution of the swift electron. Due to their different velocities, one can readily change the delay between the photons and electrons arriving at the sample by changing the distance between the EDPHS and the sample. We demonstrate the mutual coherence between the radiations from the EDPHS and the sample by performing interferometry with a combined system of an EDPHS and a WSe2 flake. We assert the mutual frequency and momentum-dependent correlation of the EDPHS and sample radiation, and determine experimentally the degree of mutual coherence of up to 27%. This level of mutual coherence allows us to perform spectral interferometry with an electron microscope. Our method has the advantage of being simple, compact and operating with continuous electron beams. It will open the door to local electron-photon correlation spectroscopy of quantum materials, single photon systems, and coherent exciton-polaritonic samples with nanometric resolution

    Similar works

    Full text

    thumbnail-image

    Available Versions