CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
FastPval: A fast and memory efficient program to calculate very low P-values from empirical distribution
Authors
MJ Li
PC Sham
J Wang
Publication date
1 January 2010
Publisher
'Oxford University Press (OUP)'
Doi
View
on
PubMed
Abstract
Motivation: Resampling methods, such as permutation and bootstrap, have been widely used to generate an empirical distribution for assessing the statistical significance of a measurement. However, to obtain a very low P-value, a large size of resampling is required, where computing speed, memory and storage consumption become bottlenecks, and sometimes become impossible, even on a computer cluster. Results: We have developed a multiple stage P-value calculating program called FastPval that can efficiently calculate very low (up to 10-9) P-values from a large number of resampled measurements. With only two input files and a few parameter settings from the users, the program can compute P-values from empirical distribution very efficiently, even on a personal computer. When tested on the order of 109 resampled data, our method only uses 52.94% the time used by the conventional method, implemented by standard quicksort and binary search algorithms, and consumes only 0.11% of the memory and storage. Furthermore, our method can be applied to extra large datasets that the conventional method fails to calculate. The accuracy of the method was tested on data generated from Normal, Poison and Gumbel distributions and was found to be no different from the exact ranking approach. © The Author(s) 2010. Published by Oxford University Press.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/137123
Last time updated on 01/06/2016