In supervised learning -- for instance in image classification -- modern
massive datasets are commonly labeled by a crowd of workers. The obtained
labels in this crowdsourcing setting are then aggregated for training. The
aggregation step generally leverages a per worker trust score. Yet, such
worker-centric approaches discard each task ambiguity. Some intrinsically
ambiguous tasks might even fool expert workers, which could eventually be
harmful for the learning step. In a standard supervised learning setting --
with one label per task and balanced classes -- the Area Under the Margin (AUM)
statistic is tailored to identify mislabeled data. We adapt the AUM to identify
ambiguous tasks in crowdsourced learning scenarios, introducing the Weighted
AUM (WAUM). The WAUM is an average of AUMs weighted by worker and task
dependent scores. We show that the WAUM can help discarding ambiguous tasks
from the training set, leading to better generalization or calibration
performance. We report improvements with respect to feature-blind aggregation
strategies both for simulated settings and for the CIFAR-10H crowdsourced
dataset