Endemic, endangered and evolutionarily significant: cryptic lineages in Seychelles' frogs (Anura: Sooglossidae)

Abstract

Cryptic diversity corresponding with island of origin has been previously reported in the endemic, geographically restricted sooglossid frogs of the Seychelles archipelago. The evolutionary pattern behind this has not been fully explored, and given current amphibian declines and the increased extinction risk faced by island species, we sought to identify evolutionarily significant units (ESUs) to address conservation concerns for these highly threatened anurans. We obtained genetic data for two mitochondrial (mtDNA) and four nuclear (nuDNA) genes from all known populations of sooglossid frog (on the islands of Mahé, Praslin and Silhouette) for phylogenetic analyses and to construct nuDNA haplotype networks. Bayesian and maximum likelihood analyses of mtDNA support the monophyly and molecular differentiation of populations in all species that occur on multiple islands. Haplotype networks using statistical parsimony revealed multiple high-frequency haplotypes shared between islands and taxa, in addition to numerous geographically distinct (island-specific) haplotypes for each species. We consider each island-specific population of sooglossid frog as an ESU and advise conservation managers to do likewise. Furthermore, our results identify each island lineage as a candidate species, evidence for which is supported by analyses of mtDNA based on Bayesian Poisson tree processes, and independent analyses of mtDNA and nuDNA using the multispecies coalescent. Our findings add to the growing understanding of the biogeography and hidden diversity within this globally important region

    Similar works