Hyper-entangling mesoscopic bound states

Abstract

We predict hyper-entanglement generation during binary scattering of mesoscopic bound states, solitary waves in Bose-Einstein condensates containing thousands of identical Bosons. The underlying many-body Hamiltonian must not be integrable, and the pre-collision quantum state of the solitons fragmented. Under these conditions, we show with pure state quantum field simulations that the post-collision state will be hyper-entangled in spatial degrees of freedom and atom number within solitons, for realistic parameters. The effect links aspects of non-linear systems and quantum-coherence and the entangled post-collision state challenges present entanglement criteria for identical particles. Our results are based on simulations of colliding quantum solitons in a quintic interaction model beyond the mean-field, using the truncated Wigner approximation.Comment: 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions