Generation and characterization of microwave quantum states

Abstract

Quantum mechanics is the branch of physics that describes the properties and behavior of systems on the atomic and subatomic level. Over the past decades there has also been considerable progress in engineering larger-scale quantum systems. In this day and age, quantum information and quantum technology are rapidly developing areas of research where quantum effects are harnessed to improve sensitivity in measurements, encrypt secure communications, and enhance the performance of information processing and computing. Specific types of quantum states are needed for these purposes, and they can be challenging to generate in practice. This thesis describes methods to generate and characterize microwave states that could be useful for quantum computing protocols based on quantum states of light

    Similar works