Efficient Algorithms for Computationally Expensive Multifidelity Optimization Problems

Abstract

Multifidelity optimization problems refer to a class of problems where one is presented with a physical system or mathematical model that can be represented in different levels of fidelity. The term “fidelity” refers to the accuracy of representation, where higher fidelity estimates are more accurate and expensive, while lower fidelity estimates are inaccurate, albeit cheaper. Most common iterative solvers such as those employed in computational fluid dynamics (CFD), finite element analysis (FEA), computational electromagnetics (CEM) etc. can be run with different fine/course meshes or residual error thresholds to yield estimates in various fidelities. In the event an optimization exercise requires their use, it is possible to invoke analysis in various fidelities for different solutions during the course of search. Multifidelity optimization algorithms are the special class of algorithms that are able to deal with analysis in various levels of fidelity. In this thesis, two novel multifidelity optimization algorithms have been developed. The first is to deal with bilevel optimization problems and the second is to deal with robust optimization problems involving iterative solvers. Bilevel optimization problems are particularly challenging as the optimum of an upper level (UL) problem is sought subject to the optimality of a nested lower level (LL) problem. Due to the inherent nested nature, naive implementations consume very significant number of UL and LL evaluations. The proposed multifidelity approach controls the rigour of LL optimization exercise for any given UL solution during the course of search as opposed to undertaking exhaustive LL optimization for every UL solution. Robust optimization problems are yet another class of problems where numerous solutions need to be assessed since the intent is to identify solutions that have both good performance and is also insensitive to unavoidable perturbations in the variable values. Computing the latter metric requires evaluation of numerous solutions in the vicinity of the given solution and not all solutions are worthy of such computation. The proposed multifidelity approach considers pre-converged simulations as lower fidelity estimates and uses them to reduce the computational overhead. While multi-objective optimization problems have long been in existence, there has been limited attempts in the past to deal with problems where the objectives can be independently computed. For example, the weight of a structure and the maximum stress in the structure are two objectives that can be independently computed. For such classes of problems, an efficient algorithm should ideally evaluate either one or both objectives as opposed of always evaluating both objectives. A novel algorithm is introduced that is capable of selectively evaluating the objectives of the infill solutions. The approach exploits principles of non-dominance and sparse subset selection to facilitate decomposition and through maximization of probabilistic dominance (PD) measure, identifies the infill solutions. Thereafter, for each of these infill solutions, one or more objectives are evaluated based on evaluation status of its closest neighbor and the probability of improvement along each objective. Finally, there has been significant research interest in recent years to develop efficient algorithms to deal with multimodal, multi-objective optimization problems (MMOPs). Such problems are particulatly challenging as there is a need to identify well distributed and well converged solutions in the objective space along with diverse solutions in the variable space. Existing algorithms for MMOPs still require prohibitive number of function evaluations (often in several thousands). The algorithms are typically embedded with sophisticated, customized mechanisms that require additional parameters to manage the diversity and convergence in the variable and the objective spaces. A steady-state evolutionary algorithm is introduced in this thesis for solving MMOPs, with a simple design and no additional user-defined parameters that need tuning. All the developments listed above have been studied using well established benchmarks and real-world examples. The results have been compared with existing state-of-the-art approaches to substantiate the benefits

    Similar works

    Full text

    thumbnail-image

    Available Versions