Integrating Deep Learning into Digital Rock Analysis Workflow

Abstract

Digital Rock Analysis (DRA) has expanded our knowledge about natural phenomena in various geoscience specialties. DRA as an emerging technology has limitations including (1) the trade-off between the size of spatial domain and resolution, (2) methodological and human-induced errors in segmentation, and (3) the computational costs associated with intensive modeling. Deep learning (DL) methods are utilized to alleviate these limitations. First, two DL frameworks are utilized to probe the performance gains from using Convolutional Neural Networks (CNN) to super-resolve and segment real multi-resolution X-ray images of complex carbonate rocks. The first framework experiments the applications of U-Net and U-ResNet architectures to obtain macropore, solid, and micropore segmented images in an end-to-end scheme. The second framework segregates the super-resolution and segmentation into two networks: EDSR and U-ResNet. Both frameworks show consistent performance indicated by the voxel-wise accuracy metrics, the measured phase morphology, and flow characteristics. The end-to-end frameworks are shown to be superior to using a segregated approach confirming the adequacy of end-to-end learning for performing complex tasks. Second, CNNs accuracy margins in estimating physical properties of porous media 2d X-ray images are investigated. Binary and greyscale sandstone images are used as an input to CNNs architectures to estimate porosity, specific surface area, and average pore size of three sandstone images. The results show encouraging margins of accuracy where the error in estimating these properties can be up to 6% when using binary images and up to 7% when using greyscale images. Third, the suitability of CNNs as regression tools to predict a more challenging property, permeability, is investigated. Two complex CNNs architectures (ResNet and ResNext) are applied to learn the morphology of pore space in 3D porous media images for flow-based characterization. The dataset includes more than 29,000 3d subvolumes of multiple sandstone and carbonates rocks. The findings show promising regression accuracy using binary images. Accuracy gains are observed using conductivity maps as an input to the networks. Permeability inference on unseen samples can be achieved in 120 ms/sample with an average relative error of 18.9%. This thesis demonstrates the significant potential of deep learning in improving DRA capabilities

    Similar works

    Full text

    thumbnail-image

    Available Versions