Caractérisation des communautés microbiennes dans les lacs de la vallée de Stuckberry située dans l'Extrême-Arctique canadien

Abstract

L'Arctique est confronté à une importante période de transition en raison du réchauffement atmosphérique accéléré. Pour les lacs qui dominent ces régions, il en découle une prolongation de la durée sans couvert de glace. Cette couche de glace est déterminante pour les écosystèmes aquatiques arctiques. Son absence augmente la fréquence des brassages de la colonne d'eau, l'exposition à la lumière, en plus d'altérer la stratification thermale. Les microorganismes, les acteurs principaux du réseau trophique et des cycles biogéochimiques des lacs arctiques, doivent donc s'adapter aux déséquilibres de leur environnement. Il s'avère crucial de mieux comprendre les impacts des changements climatiques sur les communautés microbiennes des lacs polaires afin d'anticiper leur portée à l'échelle mondiale. Aux premières loges des changements climatiques, les quatre lacs de la vallée de Stuckberry (île d'Ellesmere) représentent des laboratoires naturels pour l'étude de ces perturbations. Bien que proches en distance, ils diffèrent par leurs caractéristiques physicochimiques, morphologie et apports en eau et nutriments. Le séquençage par amplicon du gène codant pour l'ARNr 16S a été réalisé afin de comparer les communautés microbiennes intra et interlacs. Deux lacs profonds (>25 m) et majoritairement oxygénés ont montré des assemblages de communautés similaires, possiblement expliqué par la présence d'un ruisseau les reliant. Ces communautés étaient également très distinctes de celles des lacs peu profonds (25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from the two shallow lakes (<10 m) with anoxic bottom waters. Water exchange via a stream connecting these lakes most likely explains these similarities. Each lake, however, had its own unique vertically distributed assortment of microbes that was shaped by the limnological properties of its water column. One deep lake contained proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others. The shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters contributing to the sulfur and methane cycles. This study establishes an important baseline characterization of microbial communities in lakes in a remote, extreme, and vulnerable region

    Similar works