Exploration of Aerial Firefighting Fleet Effectiveness and Cost by System of Systems Simulations

Abstract

Wildfires are becoming a more frequent and devastating phenomena across the globe. The suppression of these wildfires is a dangerous and complex activity considering the vast systems that need to operate together to monitor, mitigate, and suppress the fire. In addition, the required cooperation spans multiple institutes in different capacities. Thus, the recognition of the wildfire suppression scenario as a System of Systems (SoS) is valid. Due to the dangers associated with firefighting and the increased occurrence, there is scope for the design of unmanned aerial vehicles for wildfire suppression. In this work, a SoS driven aircraft design, cost, and fleet assessment methodology is utilized together with a wildfire simulation to investigate several sensitivities relating to design and operational parameters. Further, this paper investigates their impacts on the measures of effectiveness, i.e. burnt area and operating cost. These two parameters enable the identification of optimal fleet size for wildfire suppression for a given scenario and aircraft definition

    Similar works