Kinematic transfer learning of sampling distributions for manipulator motion planning

Abstract

Recent research has shown that guiding sampling-based planners with sampling distributions, learned from previous experiences via density estimation, can significantly decrease computation times for motion planning. We propose an algorithm that can estimate the density from the experiences of a robot with different kinematic structure, on the same task. The method allows to generalize collected data from one source manipulator to similarly designed target manipulators, significantly reducing the computation time for new queries for the target manipulator. We evaluate the algorithm in two experiments, including a constrained manipulation task with five different collaborative robots, and show that transferring information can significantly decrease planning time

    Similar works