Impact of gaseous and particulate matter emission for fluid catalytic cracking units

Abstract

Fluid catalytic cracking unit is a major part of petroleum refineries as it treats heavy fractions from various process units to produce light ends (valuable products). FCC unit feedstock consists of heavy hydrocarbon with high sulphur contents and the catalyst used is zeolite impregnated with rare earth metals i.e. Lanthanum and Cerium. Catalytic cracking reaction takes place at an elevated temperature in fluidized bed reactors generating sulphur-contaminated coke on the catalyst with large quantity of attrited catalyst fines. In the regenerator, coke is completely burnt producing SO2, PM emissions are mainly due to high attrition of cold makeup catalyst charge and operating conditions, vapour velocity particle velocity, particle collision and particle degradation. This study is dedicated to the quantitative analysis of the impact of harmful emissions resulting from FCC units on the environment

    Similar works