CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Production of erythrocytes from directly isolated or Delta1 Notch ligand expanded CD34 hematopoietic progenitor cells: process characterization, monitoring and implications for manufacture
Authors
Adrian J. Stacey (7129361)
Elizabeth Ratcliffe (1250265)
+4 more
Forhad Ahmed (1256916)
Katie Glen (1255023)
Rob Thomas (1249266)
Victoria L. Workman (5334602)
Publication date
1 January 2013
Publisher
Abstract
Background aims: Economic ex vivo manufacture of erythrocytes at 10 cell doses requires an efficiently controlled bio-process capable of extensive proliferation and high terminal density. High-resolution characterization of the process would identify production strategies for increased efficiency, monitoring and control. Methods: CD34 cord blood cells or equivalent cells that had been pre-expanded for 7 days with Delta1 Notch ligand were placed in erythroid expansion and differentiation conditions in a micro-scale ambr suspension bioreactor. Multiple culture parameters were varied, and phenotype markers and metabolites measured to identify conserved trends and robust monitoring markers. Results: The cells exhibited a bi-modal erythroid differentiation pattern with an erythroid marker peak after 2 weeks and 3 weeks of culture; differentiation was comparatively weighted toward the second peak in Delta1 pre-expanded cells. Both differentiation events were strengthened by omission of stem cell factor and dexamethasone. The cumulative cell proliferation and death, or directly measured CD45 expression, enabled monitoring of proliferative rate of the cells. The metabolic activities of the cultures (glucose, glutamine and ammonia consumption or production) were highly variable but exhibited systematic change synchronized with the change in differentiation state. Conclusions: Erythroid differentiation chronology is partly determined by the heterogeneous CD34 progenitor compartment with implications for input control; Delta1 ligand-mediated progenitor culture can alter differentiation profile with control benefits for engineering production strategy. Differentiation correlated changes in cytokine response, markers and metabolic state will enable scientifically designed monitoring and timing of manufacturing process steps. © 2013 International Society for Cellular Therapy
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Loughborough University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:figshare.com:article/95653...
Last time updated on 26/03/2020