Some quadrature methods for general and singular integrals in one and two dimensions

Abstract

In this thesis numerical integration in one and two dimensions is considered. In chapter two transformation methods are considered primarily for singular integrals and methods of computing the transformations themselves are derived. The well-known transformation based on the IMT rule and error function are extended to non-standard functions. The implementation of these rules and their performances are demonstrated. These transformations are then extended to two-dimensions and are used to develop accurate rules for integrating singular integrals. In addition to this, a polynomial transformation with the aim of the reduction in the number of function evaluations is also considered and the resultant product rule is applied to two-dimensional non-singular integrals. Finally, the use of monomials in the construction of integration rules for non-singular two-dimensional integrals is considered and some rules developed. In all these situations the rules developed are tested and compared with existing methods. The results show that the new rules compare favourably with existing ones

    Similar works