Improving Fire Emergency Management Using Occupant Information and BIM-Based Simulation

Abstract

The increasing complexity of buildings has brought some difficulties for emergency response. When fires occur in a building, limited perception regarding the disaster area and occupants can increase the probability of injuries and damages. Thus, the availability of comprehensive and timely information may help understand the existing conditions and plan an efficient evacuation. For this purpose, Building Information Modeling (BIM) should be integrated with three sets of information: (1) occupancy that defines the type of space usage; (2) occupants’ information; and (3) sensory data. The Industry Foundation Classes (IFC), as a standard of BIM, has the definitions for all areas, volumes, and elements of a building. IFC also has the basic definitions of sensor and occupant entities. However, these entities do not provide enough dynamic and accurate information for supporting emergency management systems. In addition, building renovation projects have an effect on evacuation time. During the building renovation projects, space is shared between the construction crews and occupants. The construction works change the building layout and movement flow, which increase the occupants’ vulnerability, affecting their evacuation behavior under emergency conditions. Hence, the safety and wellbeing of the occupants as well as their evacuation time should be considered under emergency incidents. This thesis aims to improve fire emergency management using occupant information and BIM-based simulation. For this purpose, a “dynamic BIM” for fire emergency real-time management is developed that captures enough dynamism regarding the building condition as well as environmental conditions and occupants’ behavior. Also, an Agent-Based Model (ABM) is used to assist in the analysis of the static and dynamic behavior of the environment and occupants in BIM. The specific objectives of the research are: (1) extending IfcSensor entity for occupant’s sensors; (2) adding new attributes to IfcOccupant to support emergency response operations and defining a new entity for occupancy; (3) defining the relationships between sensors, occupants, occupancy, time series, and building components in the context of building evacuation; (4) creating dynamic BIM for tracking occupants and environmental states; and (5) evaluating the evacuation time for specific scenarios where additional spatio-temporal constraints exist during a fire incidence. Renovation construction operations are considered as such constraint and an ABM co-simulation framework is developed under emergency conditions. The feasibility of the proposed methods is discussed using different case studies

    Similar works