Electromagnetically induced transparency and lattice resonances in metasurfaces composed of silicon nanocylinders

Abstract

Densely packed metasurfaces composed of cylindrical silicon nano-resonators were found to demonstrate the phenomenon of electromagnetically induced transparency at electric dipolar resonances. It was shown that this phenomenon is not related to overlapping of dipolar resonances or to the Kerker’s effects. The observed transparency appeared to be related to interference between waves scattered by nano-resonators and by additional scattering centers including the electric branch of lattice resonances. Coupled resonance fields were also found to contribute to observed phenomena

    Similar works

    Full text

    thumbnail-image