Host-Like Conditions Are Required for T6SS-Mediated Competition among Vibrio fischeri Light Organ Symbionts

Abstract

Bacteria employ diverse competitive strategies to enhance fitness and promote their own propagation. However, little is known about how symbiotic bacteria modulate competitive mechanisms as they compete for a host niche. The bacterium Vibrio fischeri forms a symbiotic relationship with marine animals and encodes a type VI secretion system (T6SS), which is a contact-dependent killing mechanism used to eliminate competitors during colonization of the Euprymna scolopes squid light organ. Like other horizontally acquired symbionts, V. fischeri experiences changes in its physical and chemical environment during symbiosis establishment. Therefore, we probed both environmental and host-like conditions to identify ecologically relevant cues that control T6SS-dependent competition during habitat transition. Although the T6SS did not confer a competitive advantage for V. fischeri strain ES401 under planktonic conditions, a combination of both host-like pH and viscosity was necessary for T6SS competition. For ES401, high viscosity activates T6SS expression and neutral/acidic pH promotes cell-cell contact for killing, and this pH-dependent phenotype was conserved in the majority of T6SS-encoding strains examined. We also identified a subset of V. fischeri isolates that engaged in T6SS-mediated competition at high viscosity under both planktonic and host-like pH conditions. T6SS phylogeny revealed that strains with pH-dependent phenotypes cluster together to form a subclade within the pH-independent strains, suggesting that V. fischeri may have recently evolved to limit competition to the host niche

    Similar works