A Study on Reduction of Fuel Consumption and Emissions of Ships with Marine Diesel-Electric Hybrid Propulsion System
- Publication date
- Publisher
- 한국해양대학교 대학원
Abstract
The problem of environmental pollution has extended beyond the domestic level to the international level. Accordingly, to regulate environmental pollution, the International Maritime Organization (IMO) strictly regulates air pollutants. Among them, the amount of air pollutants emitted from ships is considerable, and the regulations are being strengthened. In order to protect the air environment, IMO is gradually increasing the limit of the exhaust gas emission of ships and is in the process of achieving the target value.
In order to satisfy these strict regulations, many fields are making ceaseless efforts to reduce exhaust gas emissions. For example, In the field of ships, in order to use fuel efficiently, ships are sailing at an economical operating speed. However, these efforts alone are insufficient to achieve great results in reducing exhaust gas emissions, Therefore, there is a demand for the introduction of eco-friendly ships, and research and development on various propulsion system technologies are in progress. Among them, there is an electric propulsion system, which is an eco-friendly propulsion system. In order to use the electric propulsion system, a battery is required, but the current technology has the disadvantage of being bulky and has a space limitation when installing it in a small vessel.
Therefore, in this paper, the diesel-electric hybrid propulsion system is used to avoid the low-load operation of the engine in this section by using the electric propulsion system possible in the low-load section where the fuel efficiency is the worst in the diesel propulsion system and generates a lot of exhaust gas. In the middle load to high load section, the diesel engine can achieve optimum control by using the equivalent consumption minimization strategy to achieve optimum efficiency. As target vessels to which this is applied, a 39ton general passenger ship, a 99ton car ferry, and a 106ton car ferry were selected. The fuel consumption and exhaust gas emissions of conventional diesel propulsion ships and diesel-electric hybrid propulsion ships were compared and analyzed through simulations based on the load operating environment of ships operating in real sea areas.제 1 장 서 론 1
1.1 연구배경 1
1.2 연구내용 2
1.3 논문의 구성 3
제 2 장 선박의 추진방식 5
2.1 기계식 추진 5
2.2 전기추진 5
2.3 복합추진 6
2.3.1 직렬식 디젤-전기 복합추진시스템 6
2.3.2 병렬식 디젤-전기 복합추진시스템 7
제 3 장 디젤-전기 복합추진시스템 8
3.1 디젤-전기 복합추진시스템의 개요 8
3.2 배터리시스템 8
3.3 전력변환장치 11
3.3.1 DC-DC Converter 12
3.3.2 정류기 13
3.3.3 인버터 14
3.4 축발전기·전동기 15
3.5 디젤엔진 19
3.6 기어박스 19
제 4 장 디젤-전기 복합추진시스템 에너지관리시스템의 최적제어방식 21
4.1 디젤-전기 복합추진시스템의 에너지관리시스템 개요 21
4.2 등가소비최소화전략의 개요 22
4.3 상태기계제어의 개요 22
4.3.1 무어기계 23
4.3.2 밀리기계 23
4.4 등가소비최소화전략 적용을 위한 에너지 최적제어규칙 23
4.4.1 기존의 운전모드 방식 25
4.4.2 제안하는 운전모드 방식 26
4.4.3 State 0(PTH 운전모드) 28
4.4.4 State 1(Mech.1 운전모드) 29
4.4.5 State 2(PTI1 운전모드) 30
4.4.6 State 3(PTI2 운전모드) 31
4.4.7 State 4(PTO1 운전모드) 31
4.4.8 State 5(PTO2 운전모드) 32
4.4.9 State 6(Mech.2 운전모드) 33
4.4.10 등가소비최소화전략을 적용한 상태기계제어 34
4.4.11 상태기계제어의 설계 38
제 5 장 실 선박 적용 검토 38
5.1 디젤-전기 복합추진시스템 적용 대상 선박 선정 40
5.1.1 39톤 일반 여객선 41
5.1.2 99톤 차도선형 여객선 43
5.1.3 106톤 차도선형 여객선 44
5.2 대상 선박의 항로 분석을 통한 부하 환경 설정 46
5.2.1 39톤 일반 여객선 46
5.2.2 99톤 차도선형 여객선 47
5.2.3 106톤 차도선형 여객선 48
제 6 장 시뮬레이션 50
6.1 시스템 구성 50
6.1.1 디젤 추진시스템 50
6.1.2 디젤-전기 복합추진시스템 50
6.1.3 제어기 51
6.2 디젤 추진시스템과 상태기계제어를 이용한 디젤-전기 복합추진시스템의 비교 54
6.2.1 39톤 일반 여객선 54
6.2.2 99톤 차도선형 여객선 60
6.2.3 106톤 차도선형 여객선 66
제 7 장 결 론 74
참고문헌 76Maste